Postsynaptic block of frog neuromuscular transmission by conotoxin GI.
نویسندگان
چکیده
Conotoxin GI, a peptide neurotoxin contained in the venom of the marine snail Conus geographus, was applied to the cutaneous pectoris muscle of the frog, and the effects on the postsynaptic response to acetylcholine were examined. Conotoxin GI reversibly blocked nerve-evoked muscle contractions at concentrations greater than or equal to 3 to 4 microM. Micromolar concentrations of conotoxin GI significantly reduced the amplitude of miniature endplate potentials and membrane depolarizations produced by ionophoretic application of acetylcholine, suggesting that the toxin reduced the postsynaptic sensitivity to acetylcholine. The reduction in the sensitivity of the muscle to acetylcholine was not due to changes in muscle fiber resting membrane potential or input resistance. Conotoxin GI reduced the amplitudes but did not affect the rates of decay of focal, extracellularly recorded endplate currents or miniature endplate currents, suggesting that the toxin did not affect the lifetime of ion channels opened by acetylcholine. Miniature endplate currents decay five to six times more slowly than normal when acetylcholinesterase is blocked with neostigmine methyl sulfate due to repeated binding of acetylcholine to receptors as it diffuses from the synaptic cleft. Conotoxin GI reduced the amplitude and increased the rate of decay of miniature endplate currents recorded in the presence of neostigmine methyl sulfate, suggesting that the toxin reduced the binding of acetylcholine to endplate receptors. These results are consistent with the hypothesis that conotoxin GI blocks neuromuscular transmission at the frog endplate by reducing the binding of acetylcholine to receptors.
منابع مشابه
Distribution of Ca*+ Channels on Frog Motor Nerve Terminals Revealed by Fluorescent o-Conotoxin
Tetramethylrhodamine-conjugated w-conotoxin was used as a fluorescent stain (Jones et al., 1989) to determine the spatial distribution of voltage-gated Ca2+ channels along frog motor nerve terminals. Like native w-conotoxin, the fluorescent toxin blocked neuromuscular transmission irreversibly. The fluorescent staining was confined to the neuromuscular junction and consisted of a series of narr...
متن کاملZebrafish calls for reinterpretation for the roles of P/Q calcium channels in neuromuscular transmission.
A long-held tenet of neuromuscular transmission is that calcium-dependent neurotransmitter release is mediated by N-type calcium channels in frog but P/Q-type channels in mammals. The N-type assignment in frog is based principally on pharmacological sensitivity to ω-conotoxin GVIA. Our studies show that zebrafish neuromuscular transmission is also sensitive to ω-conotoxin GVIA. However, positio...
متن کاملCalcium channel isoforms underlying synaptic transmission at embryonic Xenopus neuromuscular junctions.
Studies on the amphibian neuromuscular junction have indicated that N-type calcium channels are the sole mediators of stimulus-evoked neurotransmitter release. We show, via both presynaptic and postsynaptic voltage-clamp measurements, that dihydropyridine (DHP)-sensitive calcium channels also contribute to stimulus-evoked release at developing Xenopus neuromuscular junctions. Whereas inhibition...
متن کاملPharmacologically and functionally distinct calcium currents of stomatogastric neurons.
Previous studies have suggested the presence of different types of calcium channels in different regions of stomatogastric neurons. We sought to pharmacologically separate these calcium channel types. We used two different preparations from different regions of stomatogastric neurons to screen a range of selective calcium channel blockers. The two preparations were isolated cell bodies in cultu...
متن کاملBlock of postjunctional muscle-type acetylcholine receptors in vivo causes train-of-four fade in mice.
BACKGROUND Train-of-four (TOF) fade during nerve-mediated muscle contraction is postulated to be attributable to inhibition of prejunctional nicotinic α3β2 acetylcholine receptors (nAChRs), while decrease of twitch tension is attributable to block of postjunctional muscle nAChRs. The validity of these presumptions was tested using specific prejunctional and postjunctional nAChR antagonists, tes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 5 1 شماره
صفحات -
تاریخ انتشار 1985